Robust Clustering in Generalized Bounded Confidence Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded-Influence Robust Estimation in Generalized Linear Latent Variable Models

Latent variable models are used for analyzing multivariate data. Recently, generalized linear latent variable models for categorical, metric, and mixed-type responses estimated via maximum likelihood (ML) have been proposed. Model deviations, such as data contamination, are shown analytically, using the influence function and through a simulation study, to seriously affect ML estimation. This a...

متن کامل

Robust, Generalized, Quick and Efficient Agglomerative Clustering

Hierarchical approaches, which are dominated by the generic agglomerative clustering algorithm, are suitable for cases in which the count of distinct clusters in the data is not known a priori; this is not a rare case in real data. On the other hand, important problems are related to their application, such as susceptibility to errors in the initial steps that propagate all the way to the final...

متن کامل

Opinion dynamics and bounded confidence: models, analysis and simulation

When does opinion formation within an interacting group lead to consensus, polarization or fragmentation? The article investigates various models for the dynamics of continuous opinions by analytical methods as well as by computer simulations. Section 2 develops within a unified framework the classical model of consensus formation, the variant of this model due to Friedkin and Johnsen, a time-d...

متن کامل

Robust Model Selection in Generalized Linear Models

In this paper, we extend to generalized linear models (including logistic and other binary regression models, Poisson regression and gamma regression models) the robust model selection methodology developed by Müller and Welsh (2005) for linear regression models. As in Müller and Welsh (2005), we combine a robust penalized measure of fit to the sample with a robust measure of out of sample pred...

متن کامل

Robust Inference in Generalized Linear Models

The weighted likelihood approach is used to perform robust inference on the parameters in a generalized linear models. We distinguish the case of replicated observations of the dependent variable for each combination of the explanatory variables, common in the design of experiment framework, and the case of one observation for each combination of the explanatory variables, very common in observ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Artificial Societies and Social Simulation

سال: 2016

ISSN: 1460-7425

DOI: 10.18564/jasss.3220